
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OMNIBAL: TOWARDS FAST INSTRUCT-TUNING FOR
VISION-LANGUAGE MODELS VIA OMNIVERSE COM-
PUTATION BALANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-language instruct-tuning models have recently made significant progress
due to their more comprehensive understanding of the world. In this work, we
discover that large-scale 3D parallel training on those models leads to an im-
balanced computation load across different devices. The vision and language
parts are inherently heterogeneous: their data distribution and model architec-
ture differ significantly, which affects distributed training efficiency. To address
this issue, we rebalance the computational load from data, model, and memory
perspectives, achieving more balanced computation across devices. Specifically,
for the data, instances are grouped into new balanced mini-batches within and
across devices. A search-based method is employed for the model to achieve a
more balanced partitioning. For memory optimization, we adaptively adjust the
re-computation strategy for each partition to utilize the available memory fully.
These three perspectives are not independent but are closely connected, form-
ing an omniverse balanced training framework. extensive experiments are con-
ducted to validate the effectiveness of our method. Compared with the open-
source training code of InternVL-Chat, training time is reduced greatly, achiev-
ing about 1.8x speed-up. Our method’s efficacy and generalizability are fur-
ther validated across various models and datasets. Codes will be released at
https://github.com/anonymousiclr293/omnibal example.

1 INTRODUCTION

Large language models (LLM) have brought new possibilities to many fields. Multi-modal models,
particularly Vision-Language Models (VLMs) Alayrac et al. (2022); Team et al. (2023a); Reid et al.
(2024); Liu et al. (2023a); Bai et al. (2023b); Chen et al. (2023), are advancing rapidly due to
their deeper understanding of the world. The training scale of Vision-Language Models (VLMs)
continues to expand, with increasingly larger datasets incorporating more text and higher-resolution
images. Compared with the LLaVA-1.5 Liu et al. (2023a), the InternVL-Chat Chen et al. (2024)
has expanded the dataset size from 665K to 5M and increased image resolution from 336x336 to
3840x2160. At the model level, larger vision encoders are adopted. The InternVL-Chat upgrades
the visual encoder from ∼300M ViT-L-336px Radford et al. (2021) to ∼6B InternViT-448px Chen
et al. (2023). The larger datasets and models result in a more time-consuming training process.
Therefore, efficient training strategies are essential for the rapid advancement of the field.

3D parallelism Shoeybi et al. (2019); Rajbhandari et al. (2020); microsoft (2020) is a popular frame-
work for large-scale distributed training, which allows data and models to be distributed across
multiple devices. Balancing computational load across devices is crucial in 3D parallelism by mini-
mizing idle times.

In this work, we find that for instruct-tuning large vision-language models, the heterogeneous nature
of data and model structures brings new challenges to 3D parallelism training: (1) Varying input
sizes of LLM and VIT cause imbalance computational loads across training iterations and devices.
(2) The heterogeneity between LLM and VIT models leads to inherent differences in the compu-
tational load of their transformer blocks. Along with varying input sizes, this inevitably results in
uneven computational load and computational bubbles. (3) Input size variation and computational

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Balanced
Dynamic Batch

Balanced Model
Partition

Balanced
Adaptive Rep-com

Omniverse Balanced Training Framework

basic

Computation Imbalanced Problem in VLM Training

What is the right part of
the image

Model
VIT MLP LLM

basic

Imbalance
Data

Heterogeneous
Model

Redundant
Memory

Solution

Problem

Data

Figure 1: Overview of the computation imbalanced problem and our proposed solution in Standard
Vision-Language instruct-tuning framework. We consider the bottleneck issues of data, model,
and memory, and propose an omniverse solution addressing these three aspects, each providing
the foundation for the next.

imbalance compel us to use the most aggressive re-computation (checkpointing) Li et al. (2014)
strategy to prevent program crashes, which wastes computational resources. We refer to those issues
caused by the heterogeneity in data and model structures in large vision-language models as the
Computation Imbalance problem, which reduces training efficiency.

To address this problem, a simple and efficient training framework called Omniverse Balance
(OmniBal) is proposed, to balance computational load across multiple devices. This framework
systematically balances computation in three bottlenecks, i.e. data, model, and memory, as shown
in Figure 1. OmniBal works in these three closely connected aspects. Data lays the groundwork
for addressing model imbalances, while data and model form the foundation for solving memory
issues. Ultimately, these three aspects collaborate to achieve balanced computation. Data: The
balanced dynamic mini-batch method is proposed to group instances as new mini-batches according
to text length and number of images. Specifically, an iterative algorithm based on sampling and
filtering combines data of different sizes into balanced groups, ensuring stable input sizes; Model:
We propose balanced model partitioning to evenly spread the computational load of LLM and VIT
across devices. Using a search-based approach, we efficiently find optimal partition strategies within
a small search space, enabling adaptation to different model architectures and hardware platforms.
The balanced dynamic mini-batch method facilitates balanced model partitioning by ensuring input
sizes are consistent in advance. Memory: A balanced adaptive re-computation method is pro-
posed to optimize the re-computation strategy on each device, maximizing both memory utilization
and training speed. We calculate the memory requirements of different models to adjust the re-
computation strategy adaptively. Notably, our proposed balanced dynamic mini-batch and model
partitioning ensure balanced computational loads on each device, making memory analysis feasible.

Extensive experiments are performed on various open-source VLM models at different scales, reduc-
ing overall training times significantly. GPU days are reduced for InternVL-Chat-1.5 (6+20B) from
61.8 to 21.3 under the Megatron-DeepSpeed microsoft (2020) backend. Scaling up to InternVL-
Chat-1.5-Plus (6+34B), we consistently observe great speed-up, from 75.4 to 30.5 GPU days. We
conduct thorough generalization experiments, including various datasets, hardware configurations,
and multiple model combinations. Consistent and substantial improvements are observed across all
experiments, demonstrating the effectiveness and versatility of our method.

2 RELATED WORK

2.1 MULTI-MODAL LARGE LANGUAGE MODEL(MLLM)

Large language models, such as ChatGPT OpenAI (2023a), GPT-4 OpenAI (2023b), Llama series
Touvron et al. (2023a;b); AI (2024), and Gemini series Team et al. (2023b); Reid et al. (2024), have
seen significant advancements recently. They rely on large datasets for training to achieve strong
performance, particularly in few-shot and zero-shot scenarios. Typically, they are built on textual

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Analysis of computation imbalance. Time and Memory represent forward time and cost
memory. t indicates token, and STD stands for standard deviation.

Imbalance Dimension Input Mean ± STD (t) Time Mean ± STD (ms) Memory Mean ± STD (G)

Inter-Stage 1420± 955 85± 93 39± 23

Intra-Stage-1 1975± 1272 136± 155 73± 6

data and can only accept text inputs. However, real-world scenarios often involve rich multi-modal
information, e.g., images. It has driven the development of large vision language models (VLMs).
Visual encoders like Vision Transformer (ViT) Dosovitskiy et al. (2021) usually incorporate vision
information. A cross-modal connector is also required to align the vision encoder outputs to the
language models. LLaVA Touvron et al. (2023a) uses the simplest MLP, BLIP series Li et al.
(2022; 2023); Dai et al. (2024) uses Q-former, Qwen-VL-Chat Bai et al. (2023b) uses a cross-
attention module. VLMs expand large language models’ capabilities and application scenarios by
instruct-tuning with text and image data. However, introducing multi-modal data and heterogeneous
encoders also brings challenges to the model training.

2.2 LARGE-SCALE DISTRIBUTED TRAINING

Distributed training is essential for efficiently utilizing multiple GPUs to train large language mod-
els. It is achieved through 3D parallelism Shoeybi et al. (2019); Rajbhandari et al. (2020); mi-
crosoft (2020): data, tensor, and pipeline parallelism. Data Parallelism splits the entire dataset
into mini-batches and assigns them to multiple devices, each with a model replica. This approach
maximizes the use of GPU power for large datasets. DeepSpeed Zero Rajbhandari et al. (2020)
enhances it by reducing weight redundancy. However, it can still be challenged by the memory
limits of individual devices when handling huge models. Tensor Parallelism distributes a model’s
weight matrices across multiple devices, enabling parallel matrix operations Shoeybi et al. (2019)
and reducing per-device memory requirements. This method accelerates computation but requires
dense inter-device communication, typically restricted to single-node deployments to minimize la-
tency. Pipeline Parallelism divides a model into segments and assigns them to different devices,
creating a computation flow like a production line. This technique facilitates larger model scaling
across nodes. GPipe Huang et al. (2019) proposes micro-batching to decrease forward bubbles.
PipeDream Narayanan et al. (2019) further proposes a one-forward-one-backward (1F1B) scheme
to optimize memory usage. In pipeline parallelism, uneven layer partitioning can cause significant
pipeline bubbles. PipeDream Narayanan et al. (2019) and AdaPipe Sun et al. (2024) optimize model
partitioning and re-computation strategies based on profiling and dynamic programming, respec-
tively. However, these advancements are primarily tested in text-based models and may require
adaptation for large vision language model scenarios.

3 COMPUTATION IMBALANCE

In this section, we explore the unique challenges of large-scale distributed training for vision-
language models, focusing on two dimensions: Inter-Stage and Intra-Stage computation imbal-
ance. Inter-Stage means the computation imbalance of different pipeline parallel stages. Intra-Stage
indicates the computation imbalance of the same stage across time and device. Figure 2 shows these
two computation imbalances more intuitively. And they both include three specific levels: data,
model, and memory. To quantify this problem, we used the InternVL-Chat-1.2 dataset Chen et al.
(2024) to perform profile statistics shown in Tabel 1. For the Intra-Stage, we counted the information
of Stage 1 as a sample.

Data Imbalance: LLMs are trained on texts using next-token prediction, allowing consistent input
lengths through arbitrary text sub-strings. In contrast, VLMs handle texts and images, requiring
data integrity, and preventing arbitrary truncation. The varying number of images, resolutions, and
text lengths result in considerable differences in input sizes across mini-batches. From Tabel 1 and
Figure 2, data imbalance occurs in Inter-Stage and Intra-Stage. To better quantify the impact of
dynamic input, we define the DistRatio (introduced in Section 4) to measure the degree of data
imbalance of VIT and LLM.

3

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

DP-0

DP-1

T-0 T-1

Inter-Stage
STD TIME 148ms MEM 5.6G

Intra-Stage1
STD TIME 580ms MEM 11.0G

VLM Training Steps

IMG NUM 4
TEXT NUM 2K

TIME 500ms
MEM 50G

TIME 160ms
MEM 40G

TIME 150ms
MEM 38G

TIME 160ms
MEM 35G

Dist Ratio for T-1
ViT 0.7 LLM 0.81

Inter-Stage
STD TIME 402ms MEM 4.3G

IMG NUM 20
TEXT NUM 16K

TIME 2000ms
MEM 80G

TIME 1600ms
MEM 80G

TIME 1000ms
MEM 73G

TIME 1100ms
MEM 70G

Inter-Stage
STD TIME 270ms MEM 6.5G

IMG NUM 9
TEXT NUM 4K

TIME 900ms
MEM 68G

TIME 300ms
MEM 60G

TIME 260ms
MEM 56G

TIME 270ms
MEM 50G

Inter-Stage
STD TIME 216ms MEM 8.4G

IMG NUM 6
TEXT NUM 3K

TIME 710ms
MEM 60G

TIME 200ms
MEM 50G

TIME 210ms
MEM 42G

TIME 220ms
MEM 38G

Intra-Stage2
STD TIME 599ms MEM 14.8G

Intra-Stage3
STD TIME 345ms MEM 13.7G

Intra-Stage4
STD TIME 384ms MEM 13.8G

Dist Ratio for T-0
ViT 0.55 LLM 0.5

Data
Parallel
Groups

Figure 2: The Problem of Computation Imbalance in VLM Instruct-tuning Training Pipeline. DP-0
and DP-1 represent different Data Parallel processes. T-0 and T-1 represent different training times.
TIME and MEM represent forward time and cost memory in the current stage respectively. STD
stands for standard deviation.

Model Imbalance: LLMs use identical transformer modules with the same computational load.
Evenly dividing these layers in pipeline parallelism distributes the load effectively. However, VLMs
require additional image pre-processing, necessitating an image encoder. The structural disparity
between VIT and LLM results in different computational demands. As shown by Tabel 1 and Figure
2, the standard deviation of forward time is huge in both Inter-Stage and Intra-Stage, indicating a
serious computation imbalance.

Memory Imbalance: LLMs require significant GPU memory due to their large parameter size.
When memory is insufficient, re-computation Li et al. (2014) techniques discard some intermediate
activation values and recompute them during backward propagation to save memory. VLM encoun-
ters great memory challenges due to the variable scales of data inputs and the heterogeneity between
vision and language models. The presence of numerous images or long text inputs can lead to ex-
cessive GPU memory usage, requiring the most aggressive re-computation settings to prevent the
program from crashing. However, excessive re-computation can slow down the training process.
From Table 1 and Figure 2, under the existing training setting, memory imbalance is reflected in
both Inter-Stage and Intra-Stage.

Differences between VLM and LLM training: As mentioned above, the difference between VLM
and LLM arises from the data composition and model structure, resulting in unique Inter-Stage and
Intra-Stage challenges. Inter-Stage: Since LLM has a fixed structure, the model can be equally di-
vided and there is no Inter-Stage imbalance for any input. Dynamic input or inconsistent text-image
ratios in heterogeneous VLM will lead to an Inter-Stage imbalance problem. Intra-Stage: For the
LLM-Pretrain task, the input is fixed and there is no Intra-Stage imbalance problem. Dynamic input
can be converted into static input by simple packing Kosec et al. (2021) to reduce the computation
imbalance for the LLM-SFT task. However, VLM instruct-tuning training cannot rely on simple
packing to ensure fixed inputs for VIT and LLM, resulting in computation imbalance problems.

4 METHOD

This section presents our computation-balanced framework OmniBal for training large vision-
language models. To address an imbalanced computational load across devices, we first manage
the large data input variations, which is the most fundamental issue in the computation imbalance
problem. This enables the possibility of balanced model partitioning. Finally, the re-computation
strategy for each partition is optimized. Appendix A.1.2 shows our training pipeline.

4

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

姚勇强

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 BALANCED DYNAMIC MINI-BATCH

For instruct-tuning VLMs, each training sample contains various images and texts, resulting in non-
fixed input sizes. We evaluate data imbalance from two perspectives: within-device samples and
cross-device mini-batches.

Pad Ratio (within-device): When combining samples of different sizes into a mini-batch, smaller
samples need to be padded to ensure aligned input sizes. The Pad Ratio is calculated as follows:

PadRatio =

∑B
i (tmax − ti)

tmax ×B
(1)

Where tmax represents the maximum number of tokens in a mini-batch of size B, and ti denotes the
number of tokens for sample i within that mini-batch.

Dist ratio (cross-device): Even after padding, the sizes of mini-batches on different devices may
vary, leading to different input scales across devices. The distribution ratio is calculated as follows:

DistRaito =

∑N
i (Tmax − Ti)

Tmax ×N
(2)

Where N represents the number of devices, Tmax denotes the maximum number of mini-batch
tokens across all devices, and Ti refers to the number of mini-batch tokens on the ith device. Non-
fixed input sizes in VLMs have a larger Pad Ratio and Dist Ratio, as shown in Table 5 (row 1). A
high Pad Ratio wastes computational resources, while a high Dist Ratio causes device idle time.
They significantly impact training throughput efficiency.

To address this issue, An adaptive grouping strategy that organizes multiple samples, ensuring that
both image and text sizes in the resulting groups remain within a relatively fixed range is imple-
mented. We refer to this method as the Balanced Dynamic Mini-Batch. Determining the optimal
grouping strategy is a non-trivial problem, An iterative method is designed using sampling and
filtering to group samples. As illustrated in Algorithm 1 and Algorithm 2, our method Iterative
Sampling and Filtering (ISF) involves the following steps:

1.Sampling Stage: For current dataset D = {(xi, yi) | i}, we randomly add samples di consisted
of images xi, text yi to current group G. If the total number of images Iv =

∑
xi∈G |xi| or the

total text length It =
∑

yi∈G |yi| reaches the predefined maximum number of images Qv or text
Qt, we add this group to the candidate set P and create a new group containing (xi, yi) for the
subsequent samples. Otherwise, we will continue adding samples to the current group. At the end
of the sampling stage, we will have a candidate set P = {Gi|i = 1, 2, 3..}.
2.Filtering Stage: We first define the target number of images Q′

v and text Q′
t. For each group Gi in

candidate setP , we keep G whose image number Iv or text length It satisfy Iv >= Q′
v or It >= Q′

t,
and remove all samples (xi, yi) in that group from D. Otherwise, we remove non-satisfied Gi from
P . Ultimately, P becomes our target set, and D becomes our updated dataset for the next iteration.

The sampling and filtering stages alternately are repeated for a maximum of T times. The candidate
set is acquired P each time, which includes more valid sample groups G. Meanwhile, we have the
updated dataset D consisting of unselected samples, which is used for sampling and filtering in the
next iteration. To ensure that the mini-batches constructed by the ISF method achieve lower Pad
Ratio and Dist ratio, appropriate values for Qv and text Qt need to be determined. The optimal
values for Qv and Qt vary across different datasets. In practice, A statistical approach described in
Section 5.1 is used to determine these values.

4.2 BALANCED MODEL PARTITIONING

Given the number of layers L in the model and the pipeline parallel size N , our goal is to find an
optimal partition strategy P = (P (1), P (2), P (3), . . . , P (N−1)) such that the training speed of the
model is maximized. Here, P (1) < P (2) < P (3) < . . . < P (N−1), and the ith partition stage Si

consists of layers lk, where P (i−1) ≤ lk < P (i), with P (0) = 1 and P (N) = l + 1. For example,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 ISF: Sampling Stage
1: D = randperm(D), set G = []
2: for (xi, yi) in D do
3: G ← G + (xi, yi)
4: if Iv > Qv or It > Qt then
5: G ← G − (xi, yi)
6: P ← P + G , set G = [(xi, yi),]
7: end if
8: end for
9: return P

Algorithm 2 ISF: Filtering Stage
1: Get P from Sampling Stage
2: for G in P do
3: if Iv < Q′

v and It < Q′
t then

4: P ← P − G
5: else
6: remove all (xi, yi) of G from D
7: end if
8: end for
9: return P , D

given a model with L = 20 layers and pipeline size N = 4, assume that we have an optimal partition
P = (5, 10, 15). The first partition Si consists of layers l1, l2, l3, l4 since P (0) = 1, P (1) = 5.

However, achieving balanced pipeline partitioning for VLMs is a more challenging task compared
to LLMs. We must consider: (1) Model Heterogeneity: The structural differences between vi-
sual and language models make simple parameter-based or layer-based partition strategies inef-
fective. (2) Communication Overheads: Different partitioning strategies result in varying com-
munication volumes, as the number of activations in each layer can differ significantly in VLMs.
(3) Hardware Variability: Different platforms exhibit varying levels of capability, particularly
in terms of communication overhead. On platforms with high network bandwidth, communica-
tion overhead can be negligible. Based on the above analysis, A heuristic search algorithm to
find the optimal partition is developed. We first identify a candidate set of partition strategies
{Pk = (P

(1)
k , P

(2)
k , P

(3)
k , . . . , P

(N−1)
k) | k = 1, 2, 3, . . .} that possibly contain the optimal one.

Then, the optimal partition strategy P ∗is selected by evaluating the actual running time:

P ∗ = argmin
Pi

f(Pi) (3)

Here, f(Pi) is the average running time obtained by training the model for several iterations.

Partition Candidates: We start by profiling each layer’s computation time FWD(li). A greedy
algorithm is employed to compute the anchor partition strategy P+, making the computation time
of all partition stages Si close. Around P+, A candidate set of partition strategies is created by
jittering P (1), P (2), . . . , P (N−1) within a radius of r. When r = 1 and N = 4, there are a total of
33 = 27 candidates.

Partition Metrics: When r and N are very large, there will be a vast number of partition candidates,
making it inefficient to evaluate the running time for each one. Therefore, two metrics to rank these
candidates are designed.

The first metric is the difference in running time between different pipeline stages Si. Smaller
differences generally result in fewer bubbles and faster execution. We use the variance of the running
times of different pipeline stages to measure this difference.

VAR(fwd time) =
N∑
i=1

(FWD(Si)− FWD(Si))
2 (4)

The second metric is the total point-to-point communication volume of the partition strategy Pi. It
depends on Pi consisting of (P (1), P (2), P (3), . . .)

SUM(comm) =
N−1∑
i=1

ACTIV(lpi) (5)

Where lpi is the last layer of partition strategy P (i) and ACTIV(lpi) is the activation number of layer
lpi, indicating the point-to-point communication volume of P (i). We use the sum of VAR(fwd time)
and SUM(comm) as the metric for the partition and rank them to select the top K candidates for
speed evaluation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.3 BALANCED ADAPTIVE RE-COMPUTATION

Thanks to the balanced dynamic mini-batch and balanced model partition, a balanced computational
load is maintained across each pipeline stage. The memory requirements are now stabilized as the
computational demand has been fixed. As a result, we can optimize the re-computation strategy
based on actual memory needs, rather than relying on the most aggressive approach to avoid crashes.
Reducing the number of re-computations accelerates the model’s backward pass, leading to a great
improvement in training speed.

We find that heterogeneous architectures have different memory requirements. For example, the
vision model in InternVL-Chat-1.5 requires more GPU memory than the language model under
the same computational load. Therefore, it is necessary to analyze the memory requirements of
each layer in the vision and language models individually and adaptively determine the optimal re-
computation strategy for each layer. Specifically, we start by profiling to determine the memory
requirements of each layer. Based on the available memory of each device, we then determine the
optimal re-computation configurations in pipeline stage Si. More details are shown in A.1.1.

5 EXPERIMENTS

In this section, The models and datasets are introduced. Then, we demonstrate the acceleration
compared to current state-of-the-art VLMs. Subsequently, a detailed comparison of each component
proposed in our method is presented, highlighting its specific contribution to training acceleration.
Finally, extensive experimental analysis is conducted.

5.1 EXPERIMENTAL SETUP

Model & Dataset setting: We conduct experiments following the open-source InternVL-Chat-1.5
setting. Our vision and language models are InternViT-6B and InternLM2-20B, respectively. Two
configurations are employed: InternVL-Chat-1.5 (6+20B) and InternVL-Chat-1.5-Plus (6+34B). As
the InternVL-Chat-1.5 dataset is not yet available, we utilize the InternVL-Chat-1.2 dataset, which
comprises approximately 1.2 million samples, as an alternative. All other training settings remain
unchanged. GPU Days are used as our evaluation metric to estimate the total training time. Specifi-
cally, GPU Days are reported based on A100 GPU usage to evaluate the speed-up performance.

Implementation Details: We determine Qv and Qt by using statistics of datasets. First, we traverse
the entire dataset and collect the summation of the lengths of all text tokens and the number of
images. Then, We calculate the average number of text tokens per image. We set Qt as the length of
the longest text token in the dataset and use the calculated text-to-image ratio to determine Qv . For
images, we set Q′

v = Qv , and for text, we set Q′
t = Qt − 128. In the InternVL-Chat-1.2 dataset,

Qt =4K, Qv =9. Note that Qv refers to the number of images. Each image will be processed into
1K tokens before being fed into VIT.

5.2 MAIN RESULTS

We demonstrate the superiority of our method under various settings in Table 2. Our baseline model
is InternVL-Chat-1.5 (6+20B) Chen et al. (2024), utilizing DeepSpeed ZeRO-3 as the training back-
end. OmniBal reduces GPU days from 38.9 to 25.3, achieving a 1.54x speed-up. Simultaneously,
we consistently maintain comparable performance across commonly used datasets, such as MMB-
EN/CN Liu et al. (2023c), ChartQA Masry et al. (2022), AI2D Kembhavi et al. (2016), MMVet
Yu et al. (2023), and MME Fu et al. (2023).

Experiments with Megatron-DeepSpeed are conducted, which integrates tensor, pipeline, and data
parallelism for larger-scale models. However, directly applying 3D parallelism can slow down train-
ing due to the heterogeneous nature of VLM models. Table 2 shows that switching to Megatron-
DeepSpeed increased GPU days from 38.9 to 61.8. OmniBal addresses this issue by achieving
computational balance across data, model, and memory, reducing GPU days from 61.8 to 21.3.
This demonstrates the importance of computational balance for effective 3D parallelism. Notably,
our method also outperformed DeepSpeed, highlighting the superiority of 3D parallelism when bal-
anced computation is achieved. Results under a larger-scale setting (InternVL-Chat-1.5-Plus) are

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Main Results. We use open-source InternVL-Chat-1.5 6+20B and 6+34B as the models
with either DeepSpeed (ZeRO-3) or Megatron-Deepspeed backend. GPU Days are reported in the
InvernVL-Chat-1.2 1.2M training dataset to show the speed-up ratio. Models are also evaluated on
five commonly used benchmarks.
Model Balance? Backend MMB-EN/CN ChartQA AI2D MMVet MME GPU Days (speed-up)

6+20B

× DeepSpeed 78.2/77.4 86.2 71.3 48.9 1901.2 38.9 (1x)
✓ DeepSpeed 78.7/77.6 86.5 71.4 50 1969.4 25.3 (1.54x)

× Megatron 79.5/77.7 87.3 71.6 45.0 1957.7 61.8 (0.63x)
✓ Megatron 78.6/77.5 86.7 70.9 48.5 1956.3 21.3 (1.83x)

6+34B

× DeepSpeed 80.0/79.2 86.6 73.4 45.9 2015.8 54.3 (1x)
✓ DeepSpeed 80.9/79.0 89.1 73.3 47.0 2153.6 35.5 (1.53x)

× Megatron 80.2/79.3 88.9 73.7 44.2 2111.9 75.4 (0.72x)
✓ Megatron 80.1/78.0 89.3 73.5 45.4 2072.7 30.5 (1.8x)

Table 3: Ablation studies of components
data balance model balance memory balance GPU Days

61.8
✓ 51.9
✓ ✓ 29.0
✓ ✓ ✓ 21.3

Table 4: Results on different datasets

Dataset Dist Ratio GPU Days
VIT LLM

LLava-665K 0.02 0.145 43.3→ 12.4
InternVL-1.2M 0.02 0.14 61.8→ 21.3
LCS-558K 0.001 0.029 23.8→ 7.5

also reported to verify the generalizability of our method. The larger model consistently improves,
accelerating the training process while maintaining model performance.

5.3 ABLATION ANALYSIS

In this section, ablation experiments on each component of our method are conducted, using
InternVL-Chat-1.5 as the baseline model with a 3D parallel Megatron-DeepSpeed backend. Ta-
ble 3 illustrates the impact of each component. The baseline model experiences a considerable
slowdown in training speed due to computational imbalance, necessitating a total of 61.8 GPU days.
By achieving data balance, GPU days are reduced to 51.9. Data balance allows us to achieve a more
balanced model partition, reducing the training time. Finally, optimizing memory with an adaptive
re-computation strategy reduces GPU days to 21.3. These results demonstrate that a holistic balance
encompassing data, model, and memory is crucial for efficient VLM training. Below we provide a
detailed analysis of each component.

The Importance of Data Balance: In Table 5, we investigate the importance of data balance in
large-scale distributed training by comparing four methods: (1) Baseline: Randomly combining
data into a mini-batch with padding aligned to the longest input within mini-batches (2) Length-
Group: Combining samples with similar text and image sizes into a mini-batch to minimize padding
within mini-batch. (3) Device-Group: Grouping samples with similar input sizes across devices
to minimize idle times. (4) Balanced Dynamic Mini-batch: Using ISF to construct balanced mini-
batches within mini-batches and cross devices.

Table 5 reveals the following: (1) Baseline: is the slowest due to the completely random combination
of different-sized samples, leading to significant size variation and excessive padding (0.31). Mean-
while, high Dist Ratio ViT (0.34) and LLM (0.30) result in computation disparities between devices,
severely impacting throughput efficiency. (2) Length-Group: enhances throughput efficiency by pre-
grouping samples of similar sizes into mini-batches, thus reducing the internal padding ratio (0.2).
Minimizing the number of redundant tokens within mini-batches effectively lowers the GPU days
required to 54.0. (3) Device-Group: reduce idle time by ensuring consistent input sizes across de-
vices. It decreases the Dist Ratio of ViT (0.125) and LLM (0.15). However, it only balances input
sizes between devices and neglects the balance within mini-batches. High padding (0.378) wastes
computational resources. (4) Our Approach: balances input sizes within mini-batches on each de-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Importance of data balance. AVE-BS indicates the average batch size in each iteration. We
report results with Model Balance (MB) and without MB.

Method AVE-BS Max-Seq-Len Pad Ratio Dist Ratio Balanced GPU Days

VIT LLM VIT LLM w/o MB w MB

baseline 4 20K 16K 0.31 0.34 0.30 × 61.8 42.2
length-group 4 20K 16K 0.20 0.26 0.13 × 54.0 40.0
device-group 4 20K 16K 0.378 0.125 0.15 × 54.5 43.6
ISF(ours) 4.6 9K 4K 0 0.02 0.14 ✓ 51.9 29.0

Table 6: Importance of model balance. VAR indicates variance. SUM(comm) is the summation of
commutation volume (MByte)

Method VAR(param) VAR(num layer) VAR(fwd time) ∆ SUM(comm) GPU days

(1) parameter-based 0.03 13.4 93.6 +0.0 42.2
(2) layer-based 0.64 1.2 20.1 +8.2 30.6
(3) profile-based 0.85 2.1 6.5 +16.6 30.9
(4) BMP (ours) 0.83 1.5 12.2 -21.0 29.0

vice and across devices simultaneously. It reduces both the Pad Ratio and the Dist Ratio, achieving a
padding ratio of 0 while maintaining a lower Dist Ratio of 0.02 and 0.14. While our method balances
input sizes, model partitioning still limits training speed. With model balance (MB), GPU days are
reduced from 42.2 to 29.0, a gain of 13.2, compared to 9.9 without MB (from 61.8 to 51.9). This
underscores the importance of a holistic balance approach.

The Importance of Model Balance: Table 6 examines balanced model partitioning, focusing
on partition strategies for pipeline parallelism. For LLM training, common methods include (1)
parameter-based and (2) layer-based, (3) profile-based methods such as DreamPipe Narayanan et al.
(2019) estimate the computation time for each layer and use this information to partition the model
effectively. Additionally, (4) our search-based Balanced Model Partition method finds the opti-
mal partition strategy from a set of candidates. As shown in Table 6, (1) Parameter-based and
(2) layer-based methods split the model’s parameters or layers across devices, achieving low vari-
ation in VAR(param) and VAR(num layer). However, they still show high variation in forward
time VAR(fwd time), leading to computational inefficiencies in the pipeline. (3) The profile-based
method ensures the optimal VAR(fwd time). However, this partitioning occurs before the vision
model’s token sub-sampling operation, increasing communication overhead and affecting training
speed. (4) Our proposed Balanced Model Partition (BMP) method explores a high-quality partition
strategy space to identify the optimal strategy, achieving the best results in 29.0 GPU days.

The Importance of Memory Balance: In Table 7, we examine the significance of memory bal-
ance. In the baseline model, varying input sizes for vision (4K–20K tokens) and language (1K–16K
tokens) lead to varying GPU memory usage. Despite aggressive re-computation, the remaining
memory on an 80G A100 can drop to 7.3G. ISF and BMP improve training speed by controlling
computational load across devices. However, memory demands still varied, e.g., GPUs 1 and 2
having more remaining memory. Our method further improves training speed by adjusting the re-
computation strategy to fully utilize the remaining memory, reducing GPU days to 21.3.

5.4 COMPONENT ANALYSIS

Convergence of ISF: The convergence performance of ISF is evaluated, with the results illustrated
in Figure 3. On the LLava-665K dataset Liu et al. (2023a), we observe that the Dist Ratio for both
vision and language data dropped significantly after just one iteration. After five iterations, the Dist
Ratio stabilized considerably. In practice, we perform ten iterations to ensure stable results, which
only take less than one minute. The computational cost is negligible relative to the overall runtime.
Additionally, our method is tested on two other datasets, InternVl-1.2M Chen et al. (2024) and
LCS558K Liu et al. (2023b), and observed similar convergence rates.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 7: Importance of memory balance. VRAMi denotes remaining VRAM(G) in pipeline stage
Si. For the baseline model, the metric varies as <minimum> ∼ <maximum>.

Method V-Seq-Len L-Seq-Len VRAM1 VRAM2 VRAM3 VRAM4 GPU Days

baseline 4K∼20K 1K∼16K 13∼50.2 7.3∼40.5 7.3∼40.5 7.3∼40.5 61.8
+ data & model balance 9K 4K 58.2 56.2 32.5 32.7 29.0
+ memory balance 9K 4K 12.3 21.7 24.7 30.0 21.3

Figure 3: ISF convergence testing. We test the convergence of ISF in various scenarios, including
(a) different datasets, (b) different patch sizes, and (c) different image resolutions.

Generalization Capability: We study the generalization capability of our method from multiple
aspects: (1) Different Datasets: As shown in Table 4, we achieved consistently low Dist Ratio on
LLava-665K, InternVL-1.2M, and LCS558K and significantly improved training speed. (2) Differ-
ent Models: Experiments are conducted using various combinations of vision and language models.
For vision models, in addition to InternVL-6B, the open-source EVA-CLIP models is incorporated,
which span a range from 1B parameters Sun et al. (2023a) to 18B parameters Sun et al. (2023b).
On the language side, several models are utilized, including Llama3-8B, Llama3-70B AI (2024),
Yi-34B NousResearch (2023), and the large-scale Qwen1.5-110B Bai et al. (2023a). As detailed in
Appendix A.2, our approach significantly reduces the GPU days required for model training. (3)
Different High-Resolution Setting: Under various settings, we achieved a speedup of approximately
2.0x, as demonstrated in Appendix A.3. (4) Different Tasks: Besides SFT tasks, pretraining tasks
are also tested, as shown in Appendix A.4, and we observed consistent improvements across all set-
tings. (5) Different Image Resolutions: As shown in Appendix A.5, our method consistently delivers
a highly satisfactory acceleration effect with different input image resolutions. (6) Different Model-
series: As demonstrated in Appendix A.6, our approach also achieves significant acceleration with
LLava-1.6. (7) Pre-Processing Strategy: Qwen2-VL team (2024) employs a novel pre-processing
strategy to support native dynamic resolution. We utilized this approach in ablation studies and
achieved comparable acceleration effects (approximately 1.9x in Appendix A.7). (8) Long-Context
Support: The capability to handle long-context is crucial for multi-modal foundation models. Our
balanced solution is also applicable to long-context training using sequence parallelism. Further
details can be found in Appendix A.8. (9) Different Hardware Results: Appendix A.9 presents the
efficiency of our method across various hardware platforms, including different GPUs (e.g., A100,
H100) and network bandwidths. (10) Large-Scale Results: large-scale experiments are shown in
Appendix A.10 on 512 GPUs and our method is still effective. These results underscore the effec-
tiveness and robustness of our method across a wide range of datasets, models, and tasks.

6 CONCLUSION

In this work, we effectively addressed the issue of imbalanced computation loads in large-scale 3D
parallel training of vision-language models by rebalancing across data, model, and memory dimen-
sions. Experimental results demonstrate that our method can significantly speed up training on many
open-source models. The effectiveness and generalizability of our approach are also validated across
various models, datasets, and hardware platforms. Our method can accelerate the development of
this field by enabling more efficient training.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Meta AI. Introducing meta llama 3: The most capable openly available llm to date. .https:
//ai.meta.com/blog/meta-llama-3, 2024.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza
Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Mon-
teiro, Jacob L Menick, Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Shar-
ifzadeh, Mikoł aj Bińkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén
Simonyan. Flamingo: a visual language model for few-shot learning. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 23716–23736. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023a.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023b.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qing-
long Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. In-
ternvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. arXiv
preprint arXiv:2312.14238, 2023.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to
commercial multimodal models with open-source suites. arXiv preprint arXiv:2404.16821, 2024.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: towards general-purpose vision-language
models with instruction tuning. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei
Lin, Jinrui Yang, Xiawu Zheng, et al. Mme: A comprehensive evaluation benchmark for multi-
modal large language models. arXiv preprint arXiv:2306.13394, 2023.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32,
2019.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth a dozen images. In ECCV, pp. 235–251, 2016.

Matej Kosec, Sheng Fu, and Mario Michael Krell. Packing: Towards 2x NLP BERT acceleration.
CoRR, abs/2107.02027, 2021. URL https://arxiv.org/abs/2107.02027.

11

. https://ai.meta.com/blog/meta-llama-3
. https://ai.meta.com/blog/meta-llama-3
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://arxiv.org/abs/2107.02027

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In ICML, pp. 12888–12900,
2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, pp. 19730–19742.
PMLR, 2023.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine learning with
the parameter server. In 11th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 14), pp. 583–598, Broomfield, CO, October 2014. USENIX Association.
ISBN 978-1-931971-16-4. URL https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/li_mu.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. NeurIPS,
36, 2023b.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? arXiv preprint arXiv:2307.06281, 2023c.

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. In ACL, pp. 2263–
2279, 2022.

microsoft. Megatron-deepspeed. https://github.com/microsoft/
Megatron-DeepSpeed, 2020.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur, Gre-
gory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: generalized pipeline par-
allelism for dnn training. In Proceedings of the 27th ACM symposium on operating systems
principles, pp. 1–15, 2019.

NousResearch. Nous hermes 2 - yi-34b. https://huggingface.co/NousResearch/
Nous-Hermes-2-Yi-34B, 2023.

OpenAI. ChatGPT. https://openai.com/blog/chatgpt/, 2023a.

OpenAI. Gpt-4 technical report, 2023b.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
techniques for clip at scale. arXiv preprint arXiv:2303.15389, 2023a.

12

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://github.com/microsoft/Megatron-DeepSpeed
https://github.com/microsoft/Megatron-DeepSpeed
https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B
https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B
https://openai.com/blog/chatgpt/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Quan Sun, Jinsheng Wang, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, and Xinlong Wang.
Eva-clip-18b: Scaling clip to 18 billion parameters. arXiv preprint arXiv:2402.04252, 2023b.

Zhenbo Sun, Huanqi Cao, Yuanwei Wang, Guanyu Feng, Shengqi Chen, Haojie Wang, and Wen-
guang Chen. Adapipe: Optimizing pipeline parallelism with adaptive recomputation and parti-
tioning. In Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, pp. 86–100, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023a.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023b.

Qwen team. Qwen2-vl. 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv
preprint arXiv:2308.02490, 2023.

13

	Introduction
	related work
	Multi-Modal Large Language Model(MLLM)
	Large-Scale Distributed Training

	Computation Imbalance
	method
	Balanced Dynamic Mini-Batch
	Balanced Model Partitioning
	Balanced Adaptive Re-Computation

	Experiments
	Experimental setup
	Main Results
	Ablation Analysis
	Component Analysis

	Conclusion

